Simulating Sensor Networks with SystemC

Alban Rrustemi,
Computer Architecture Group,
Computer Laboratory

September 19, 2006

14th ESCUGM, Darmstadt
Sensor Networks: overview

- Networks of autonomous devices using sensors to cooperatively monitor physical or environmental conditions
- Applications
 - Environmental monitoring
 - Acoustic detection
 - Seismic detection
 - Military surveillance
 - Inventory tracking
 - Medical monitoring
 - Process monitoring
 - Smart spaces
Sensor Networks: implementations

- Implementations
 - ZebraNet
 - Smart Camera Networks
 - ISIS Shooter Localization Systems
 - Intel Process Monitoring
Sensor Networks: challenges

- Research challenges
 - Networking
 - Resource management
 - Fault tolerance
 - Low power consumption
 - In-network computation
Simulation tasks

- Need for simulation environments
 - Stimulus propagation model
 - Sensor model
 - Communication model
 - Radio model (in WSN)
 - Routing algorithms
 - Power model
 - Zero configurations
Simulating Sensor Networks

- Existing NW simulators:
 - GloMoSim
 - OPNET
 - Ns-2
 - Ptolemy
 - J-Sim
 - SensorSim
 - MagicWeaver
Implementation example
Implementation example

- J-Sim
 - Built upon autonomous component architecture (ACA)
 - Components
 - Ports
 - Contracts
Modelling with SystemC

- Ideal abstraction support
 - Modules
 - Ports
 - Interfaces
 - Channels
SystemC simulation with the OSCI simulation kernel
SystemC simulation with the OSCI simulation kernel
SystemC simulation with the OSCI simulation kernel

- Fundamental assumption: nodes will be in “sleep” mode most of the time
- Process implementations with user level threads
 - Fibers, QuickThread, Pthread
- Each thread allocates resources (which may not be used)
- Static hierarchy
4.1.1 Instantiation
Instances of the following classes (or classes derived from these classes) may be created during elaboration and only during elaboration. Such instances shall not be deleted before the destruction of the module hierarchy at the end of simulation.

- sc_module (see 5.2)
- sc_port (see 5.11)
- sc_export (see 5.12)
- sc_prim_channel (see 5.14)

An implementation shall permit an application to have zero or one top-level modules and may permit more than one top-level module (see 4.3.4.1 and 4.3.5).
Static hierarchy in OSCI simulator

- Pros
 - optimization and/or transformation of internal data structures for simulation speed or capacity
 - synthesis
 - formal verification

- Cons
 - scalability
 - running different test cases
Other systems

- Same problems could be faced when simulating large:
 - Homogenous SoCs
 - NoC platforms
Ways around

- Analyse the test case
 - filter out unneeded modules before elaboration
- Use SC_METHOD instead of SC_THREAD whenever possible
- Use dynamic processes

- Not elegant!
Conclusion

- SystemC proved very suitable for modelling SN!
- Simulating: challenging!
- Thank you!